On Khovanov homology, Bar-Natan's perturbation, and Conway mutation

Maximillian Guo¹ Mentor: Jianfeng Lin²

¹Sycamore High School

²MIT

PRIMES Conference, May 2018

1 / 16

Guo, Maximillian (MIT PRIMES-USA)

What is a Knot?

A *knot* is an embedding of a circle in \mathbb{R}^3 . A *link* is composed of several knotted loops tangled together.

Figure: A knot (Source: Google Images)

2 / 16

Knot diagrams

A *knot diagram* is a projection of a knot onto a plane. Where the knot diagram crosses itself is called a *crossing*.

Figure: Knot diagram of the Hopf Link (Source: Google Images)

Equivalent Knots

Two knots are *isotopic* to each other if one can deform one continuously into the other one.

Figure: Thistlethwaite knot is the unknot (Source: Google Images)

Reidemeister Moves

Reidemeister's Theorem

Two knot (or link) diagrams represent the same knot if and only if one diagram can be transformed to the other through a series of Reidemeister moves.

Knot invariants

A *knot invariant* is a quantity defined for each knot which is the same for equivalent knots.

Figure: Thistlethwaite knot and unknot, again

6 / 16

Guo, Maximillian (MIT PRIMES-USA)

In our project, we work with the following two knot invariants: the Khovanov Homology, and a related quantity, the Bar-Natan Homology.

Theorem (Khovanov)

The Khovanov Homology of the knot is a knot invariant.

The Bar-Natan Homology of a knot is defined in a similar way as the Khovanov Homology.

Theorem (Bar-Natan) The Bar-Natan Homology of a knot is a knot invariant. (3) 7 / 16

Resolutions

Given any crossing, we can define a 0-smoothing (or 0-resolution) and a 1-smoothing. When all the crossings have been resolved, the result is a *resolution* or *smoothing*.

Figure: 0 and 1-smoothings/resolutions (Source: Google Images)

- 4 E

Resolution Cube

Figure: Resolution cube for the left handed trefoil (Source: Google Images)

-

Definition cont.

j∖i	-3	-2	-1	0	j∖i	-3	-2	-1	0
1					1				\mathbb{F}
-1				\mathbb{Z}	-1				\mathbb{F}
-3				\mathbb{Z}	-3				
-5		\mathbb{Z}			-5		\mathbb{F}		
-7		$\mathbb{Z}/2\mathbb{Z}$			-7				
-9	\mathbb{Z}				-9	\mathbb{F}			

Figure: The Khovanov and Bar-Natan homologies of the left-handed trefoil, respectively (Sources: [1] and [2])

Guo, Maximillian (MIT PRIMES-USA)

A Topic in Knot Theory

PRIMES Conference 2018

Image: Image:

A B A A B A

Conway mutation

Draw a circle around some part of the knot diagram so the circle intersects the knot diagram at exactly 4 points. Now any one of these is a *Conway mutation*:

Figure: A Conway mutation (Created with Geogebra)

Guo, Maximillian (MIT PRIMES-USA)

A Topic in Knot Theory

Examples of Conway mutation

A famous example of knots related by Conway mutation:

Figure: The Kinoshita-Teresaka Knot and a mutation (Source: Wikipedia)

Guo, Maximillian (MIT PRIMES-USA)

A Topic in Knot Theory

PRIMES Conference 2018

Theorem (Bloom, Wehrli, 2009)

The Khovanov Homology of a knot is invariant under Conway mutation.

Our Main Result

The Bar-Natan Homology of a knot is also invariant under Conway mutation.

13 / 16

Guo, Maximillian (MIT PRIMES-USA)

A Topic in Knot Theory

PRIMES Conference 2018

• The Khovanov Homology and Bar-Natan Homologies are *graded vector spaces*, but our proof ignores the gradings aspect.

$$V = \bigoplus_{i,j \in \mathbb{Z}} V_{ij}$$

Our proof shows an existence of an isomorphism, but does not construct one.

Thank you to:

- My mentor Dr. Lin
- Dr. Tanya Khovanova
- The MIT Math Department
- The MIT-PRIMES program
- My parents

Pictures taken from Google Images, Wikipedia, and Geogebra
[1] Dan Jones. An Introduction to Khovanov Homology.
[2] Francesco Lin. Khovanov homology in characteristic two and involutive monopole Floer homology.

16 / 16

< ロト < 同ト < ヨト < ヨト